Matching thermal to visible face images using hidden factor analysis in a cascaded subspace learning framework

نویسندگان

  • Cunjian Chen
  • Arun Ross
چکیده

Matching thermal (THM) face images against visible (VIS) face images poses a significant challenge to automated face recognition systems. In this work, we introduce a Heterogeneous Face Recognition (HFR) matching framework, which uses multiple sets of subspaces generated by sampling patches from VIS and THM face images and subjecting them to a sequence of transformations. In the training phase of the proposed scheme, face images from VIS and THM are subjected to three different filters separately and then tessellated into patches. Each patch is represented by either a Pyramid Scale Invariant Feature Transform (PSIFT) or Histograms of Principal Oriented Gradients (HPOG). Then, a cascaded subspace learning process consisting of whitening transformation, factor analysis, and common discriminant analysis is used to construct multiple common subspaces between VIS and THM facial images. During the testing phase, the projected feature vectors from individual subspaces are concatenated to form a final feature vector. Nearest Neighbor (NN) classifier is used to compare feature vectors and the resulting scores corresponding to three filtered images are combined via the sum-rule. The proposed face matching algorithm is evaluated on two multispectral face datasets and is shown to achieve very promising results. © 2015 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

Thermal to Visible Face Recognition

In low light conditions, visible light face identification is infeasible due to the lack of illumination. For nighttime surveillance, thermal imaging is commonly used because of the intrinsic emissivity of thermal radiation from the human body. However, matching thermal images of faces acquired at nighttime to the predominantly visible light face imagery in existing government databases and wat...

متن کامل

Fusion of Multi-Scale Visible and Thermal Images using EMD for Improved Face Recognition

This paper presents the implementation of face recognition system using JDL framework. Fusion of visible and thermal images enhances the recognition rate and efficiency under varying illumination conditions. In this system, registration of visible and thermal images is performed using Fourier based method and fusion is performed using Empirical Mode Decomposition (EMD). The feature extraction a...

متن کامل

Deep Cross Polarimetric Thermal-to-visible Face Recognition

In this paper, we present a deep coupled learning framework to address the problem of matching polarimetric thermal face photos against a gallery of visible faces. Polarization state information of thermal faces provides the missing textural and geometrics details in the thermal face imagery which exist in visible spectrum. we propose a coupled deep neural network architecture which leverages r...

متن کامل

Lda Based Face Recognition by Using Hidden Markov Model in Current Trends

Hidden Markov model (HMM) is a promising method that works well for images with variations in lighting, facial expression, and orientation. Face recognition draws attention as a complex task due to noticeable changes produced on appearance by illumination, facial expression, size, orientation and other external factors. To process images using HMM, the temporal or space sequences are to be cons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition Letters

دوره 72  شماره 

صفحات  -

تاریخ انتشار 2016